Buy from Amazon

Buy from Amazon


Geo Ham

"Formula 1 should be the pinnacle of motor racing. It should have the minimum of parameters controlling performance. There are only four parameters which control a racing car; one is the power from the engine; the second is the aerodynamic download it can produce; the third is the amount of grip which can be obtained by the tyres and the fourth is the weight."

Colin Chapman

The evolution of the Grand Prix car since the birth of automobile racing in the last decades of the 19th century has been nothing short of startling yet the Jetsons not withstanding their basic dynamics have remained fairly constant. The main advances having taken place in the areas of aerodynamics, tires, electronics and the use of exotic materials but steering and gear changes and braking still require human intervention to a greater or lesser degree. When most of the driver aids were banned FIA's majordomo, Max Mosley feared of the day when drivers would no longer be required. That computers would control all aspects of the car as it raced around the circuit. Happily that day is not yet here.


When Mercedes-Benz introduced the W196 in 1954 they limited the car to three gauges for rpm, oil pressure and water temperature so as not to cause the driver to lose concentration. As recently as 1992, the steering wheel on a Formula 1 car was a relatively plain, straightforward piece of equipment, round in shape, with a metal plate at the centre to attach it to the steering column, and generally no more than three buttons – one for selecting neutral, one for releasing liquid through a tube in the helmet for the driver to replenish his fluid levels and one for the radio.

The advent of complex electronic systems in Formula 1 throughout the 1990s changed all that but instead of mounting seven more gauges on a dashboard controls were added to the steering wheel and mostly limited to indicator lights and small dials. McLaren engineer John Barnard introduced a system that enabled Nigel Mansell to shift gears without having to move a hand away from the steering wheel. It was introduced as a lever system at the back of the steering wheel. A pull on the left paddle will shift one gear down while the right paddle shifts up in a similar way. This eliminates the possibility of a driver missing a gear, therefore increasing the smoothness and improving the timing of gearshifts. Together with the introduction of semi-automatic gearboxes, this was one of the most changing introductions in the history of Formula One, especially on the driver's side. Later on, when left foot braking was introduced into Formula One, the clutch pedal was removed and replaced by a fully automatic hydraulic clutch, activated when the driver shifts gears on the steering wheel.

Engine mapping, traction control and the advent of launch control programs that optimized the race start procedure all required various buttons and toggle switches to enable the driver to fine-tune his car’s settings while on-track. Modern Formula 1 steering wheels are also equipped with a further lever clutch lever which the driver can use to declutch when standing still, such as during a pitstop or in the gravel to keep the engine running.


Stearing WheelThe Ferrari 150° Italia Full Size Steering Wheel, a hand-made replica is an incredibly highly detailed, full size replica of the 2011 Ferrari 150° Italia steering wheel as used by Fernando Alonso and Felipe Massa in the 2011 F1 Championship.

The steering wheel is hand built from genuine carbon fibre and is fitted with moving buttons, paddles and switches. The replica comes with a red leather base and a clear dust cover.

Buy at Ferrari Store


The De Dion-Bouton tricycle that Jean-Marie Corre rode to fourth place and first in class at the 1898 Paris-Bordeaux motor race did not have a gearbox. When the bicycle stopped, the motor stopped and the rider would have to pedal to get it re-started. Yet on that day it was only the team of Panhards that were able to stay ahead of him.

The art of shifting gears in the age of automatic transmissions and paddle shifters is a distant memory of the top line driver, a remnant of the lower classes. What the computer accomplishes in the blink of an eye once offered a passing opportunity via the missed shift. The following two stories, one from the 1921 French Grand Prix and the other of more recent vintage illustrate what has been lost ...

Although they had switched engines on Uncle at the Ballot factory, giving him the slowest of the four, during practice he consistently lapped faster than the other drivers. Quite naturally, this worried the Frenchmen. Ballot was not at all pleased. With much excitement he asked: "How does De Palma do it?" "I wish I knew," confessed Chassagne.

However, the answer was simple. Uncle could outdrive them, but the real trick was in the way we shifted gears on turns. During the time we rebuilt the Ballot in New York we had moved the gearshift lever to the centre, whereas before it had been on the right-hand side. Because it was a right-hand drive, it was now possible for me to shift gears whenever Uncle signaled me. As a result he never had to take his hands from the wheel as we approached a curve. He would yell, "Second!" or "First!" whichever gear he wanted in accordance with the speed we were making. This saved a few seconds on every turn and accounted for the faster time we were making around the course.

Ballot was much concerned and, the morning before the race, discovered our secret. During a final rehearsal with the car tuned perfectly and our morale high, M. Ballot hid behind a bush on one of the turns. As we entered the curve and Uncle Ralph gave the signal I reached for the gearshift but I was too anxious. Instead of shifting into second gear I started to put it in reverse. There was a loud grinding of gears. Up jumped Ballot, howling like an Indian. Waving his arms wildly he charged out onto the course.

"Stop. Stop!" he yelled. Ballot ran up to us in record time.

"Eet is not permitted for ze mechanician to touch ze change-speed lever!", he yelled. "De Palma, ze driver, must make ze shift!"


.... Team draughtsman Martin Oglivie recalls Peterson going round lap after lap, proving the Lotus-Getrag gearbox, then suddenly going faster...'And when he came in we said, "Ah you've sorted out the selection problem", and he just smiled that slow smile and said, "No. I yust stopped you-sing the clutch." '

A preselector or self-changing gearbox is a type of manual gearbox that was popular with vehicles from the 1930s. The defining characteristic of a preselector gearbox is that the manual shift lever is used to "pre-select" the next gear to be used, then a separate control (a foot pedal) is used to engage this in one single operation, without needing to work a manual clutch.


Carbon fiber brakes were introduced to Formula 1 by the Brabham team in 1978. A modern Formula 1 car takes 4 seconds to go from 300 km/h to a complete stop. During braking a driver can be subjected to a horizontal deceleration of over 5Gs. During such heavy braking, the temperature of the brake rotor and pads can warm up from 400°C to more than 1000°C. These high temperatures occur at the very end of the braking, and is approximately the highest temperature a carbon brake disc can take. With the advent of semiautomatic gearboxes and paddle shifters a driver now uses his left foot to apply the brakes.


"Aerodynamics are for people who can't build engines"
Enzo Ferrari

Builders of race cars always realized that the wind traveling over the surface of the car effected the handling but were at a loss on how to make proper use of that air. Several teams started to experiment with the now familiar wings in the late 1960s. WingRace car wings operate on exactly the same principle as aircraft wings, only in reverse. Air flows at different speeds over the two sides of the wing (by having to travel different distances over its contours) and this creates a difference in pressure, a physical rule known as Bernoulli's Principle. As this pressure tries to balance, the wing tries to move in the direction of the low pressure. Planes use their wings to create lift, race cars use theirs to create downforce. A modern Formula One car is capable of developing 3.5 g lateral cornering force (three and a half times its own weight) thanks to aerodynamic downforce. That means that, theoretically, at high speeds they could drive upside down.

Early experiments with movable wings and high mountings led to some spectacular accidents, and for the 1970 season regulations were introduced to limit the size and location of wings. Evolved over time, those rules still hold largely true today.

By the mid 1970s 'ground effect' downforce had been discovered. Lotus engineers found out that the entire car could be made to act like a wing by the creation of a giant wing on its underside which would help to suck it to the road. The ultimate example of this thinking was the Brabham BT46B, designed by Gordon Murray, which actually used a cooling fan to extract air from the skirted area under the car, creating enormous downforce. After technical challenges from other teams it was withdrawn after a single race. And rule changes followed to limit the benefits of 'ground effects' - firstly a ban on the skirts used to contain the low pressure area, later a requirement for a 'stepped floor'.


Wind Tunnels
During the 50s and 60s teams began to reach out to the aeronautics industry and incorporate their use of windtunnels in the development of their race cars and initial work focused on reducing drag. This resulted in aerodynamic cars that tended to generate lift and upset the handling balance of the cars. This might be understandable when you consider that downforce in airplanes may not be such a good thing! However this was to cause windtunnels to gain a bad reputation. In the United States Jim Hall's Chaparral team, working with Chevrolet's R & D began to realize the enormous potential of downforce and applied it to their Can-Am, cars. The work was done without the benefit of electronic sensors and it was not until later that windtunnels would provided an environment to accurately measure these forces as they interacted with the race car. Today every team has access to one or more windtunnels, most with rolling roads. In November 1969 a landmark symposium was held in London where a number of papers were presented relating to the use of windtunnel testing of race cars.

Power Unit

The power units are fitted with two electric motors, one linked directly to the turbocharger, the other working in the same was that KERS MGU’s have done in the past. The combined maximum power output will be around 760bhp similar to the output of the rev limited V8’s of 2013.

  • Engine - As of 2014 all of the cars in F1 will be fitted with 1.6 litre turbocharged engines. All Power Units must have direct fuel injection (DI), where fuel is sprayed directly into the combustion chamber. A turbocharger uses exhaust gas energy to increase the density of the engine intake air and therefore produce more power. The exhaust energy is converted to mechanical shaft power by an exhaust turbine. The mechanical power from the turbine is then used to drive the compressor, and also the MGU-H.
  • Hybrid System - More of an energy recovery system since it starts with zero energy stored. The internal combustion engine will produce power through consumption of traditional carbon-based fuel, while electrical energy will be harvested from exhaust and braking by two motor generator units (MGU-H & MGU-K) working in harmony. The MGU-K is connected to the crankshaft of the internal combustion engine, generally mounted underneath the oil tank in a recess at the back of the chassis. Under braking, the MGU-K operates as a generator, recovering some of the kinetic energy dissipated during braking. The MGU-H is connected to the turbocharger. Also acting as a generator, it absorbs power from the turbine shaft to convert heat energy from the exhaust gases. The electrical energy can be either directed to the MGU-K or to the battery for storage for later use.
  • Battery - Heat and Kinetic Energy recovered can be consumed immediately if required, or used to charge the Energy Store, or battery. The stored energy can be used to propel the car with the MGU-K or to accelerate the turbocharger with the MGU-H. Compared to 2013 KERS, the ERS of the 2014 power unit will have twice the power (120 kW vs 60 kW) and the energy contributing to performance is ten times greater. In fact one could do away with the battery and rely on capacitors to store the energy.


Sensors in race cars have been around since the days of the Silver Arrows. Auto Union's Professor Eberan-Eberhorst helped develop a special on-board recording instrument that plotted various parameters such as car speed, engine speed, shifting and breaking points. The major limitation of this system is that the data was not available until after the race. For real-time data acquisition it was necessary that there be some form of telemetry. Wireless telemetry made early appearances in 1930 in France and Russia. The German V-2 rocket used a system of primitive multiplexed radio signals called "Messina" to report four rocket parameters, but it was so unreliable that Werner von Braun once claimed it was more useful to watch the rocket through binoculars. The widespread use of telemetry in Formula 1 occurred in the late 1980s when teams were sending data only in bursts as the car passed close to the pits. Nowadays current Formula 1 cars have 150 to 300 sensors, chief amongst them is the fuel flow sensor. These measure a 100kg/h fuel flow limit set as part of the 2014 regulations. The chief maker of this sensor is the English company Gill Sensors and Controllers and operates using ultrasonic technology. These sensors must withstand temperatures exceeding +100°C, 50g of shock in 60ms, high acceleration loads to 10Khz and the build-up of oil and dirt ingress encountered from racing at speeds of up to 350 km/h. With new regulations for 2014, Gill has recently developed a new generation of capacitive liquid level sensors with remote electronics that offer reliability and accuracy in operating temperatures up to +170°C.

During official testing sessions, teams are allowed to use large sensors to better understand the performance of their cars. Typical sensors include:

  • Pitot Masts - A pitot tube is a pressure measurement instrument used to measure fluid flow velocity. The pitot tube was invented by a French engineer named Henri Pitot in the early 18th century and later modified to its modern form in the mid-19th century by another Frenchman, Henry Darcy.
  • Infrared Tire Temperature - Large pods containing an array of infrared thermal cameras are fitted to various parts of the bodywork temperature changes across the tire tread as well as areas of the bodywork to see if it is getting hot and to gauge the path of the exhaust plume.
  • Aero Rakes - These are made up of an array of Kiel probes which will map airflow across the full surface of the rake or grid. Commonly these are fitted behind the front tyre to measure the tyre's wake, or towards the rear of the sidepod to map the flow passing towards the rear wing/diffuser.
  • Cameras - These are useful in measuring deflection of bodywork or monitoring surface flows by detecting the relative movement of the stickers wool tufts attached to the bodywork.


At the dawn of motor racing a puncture was not considered a mechanical failure, it was expected to occur and often. Drivers and their riding mechanics were expected to fix them where ever they occurred. It was not a question of traction but rather of survivability.

A reporter once asked 1980 World Champion Alan Jones whether his tires played an important part in his race that day. Jones replied “Oh, absolutely. You see, they keep the wheels from touching the ground.” In the early sixties teams realized that by removing the grooves from a tire a car will have more grip on the road surface due to the expanded area of the tire making contact with the road. All teams ran with slick tires up to the 1998 season when grooved tires.were mandated in an attempt to slow speeds. For 2009 regulation changes have called for a return to slick tires and a ban on the use of tire blankets to pre-heat the tires to their optimum temperature of 110C-110C.

For the 2014 season Pirelli has create two types of tires, one for dry conditions and the other for wet. Within the dry tires there are four compounds, Super Soft, Soft which are referred to as option tires and Medium, Hard which are referred to as the prime tire. For wet weather there are intermediate and full wet tires easily identified through their tread patterns the dry tires being slick but color coded. Pirelli will bring approximately 1800 tires to each race meeting with a prime and option tire designated by the FIA for expected conditions. One will be designated the primary tire an the other the option tire. These tires are designed to have a nominal life span of 1/2 to 1/3 of the race distance.

Be sure to visit the Grand prix History Auto Racing Books
Mon Ami Mate by Chris Nixon A Racing Motorist  by S.C.H. Davis Gentlemen, Start Your Engines by Wilbur Shaw Grands Prix 1934-1939 by Rodney Walkerley Full Throttle by Tim Birkin Auto Union V16 - A Technical Appraisal by Ian Bamsey Sir Henry Segrave by Cyril Posthumus Managing a Legend by Robert Edwards It was Fun!: My Fifty Years of High Performance Power and Glory by Wiliam Court My Cars, My Career by Stirling Moss

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon
The Art and Science of Grand Prix Driving by Niki Lauda
Buy from Alibris
Ayrton Senna's Principles of Race Driving by Ayrton Senna
Buy from Alibris
Competition Driving by Alain Prost
Buy from Alibris

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon

Buy from Amazon